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Abstract

Test data generated according to two different multidimensional item

response theory models were compared at both the item response level and the

test score level to determine if measurable differences between the models could

be detected when the data sets were constrained to be equivalent in terms of item

p-values. Although differences could be detected at the item level, these

differences decreased as the correlation between examinee abilities increased.

Furthermore, these item differences were small in magnitude and could be

considered unimportant or insignificant from a practical standpoint. No

differences were found at the total test score level, and it was concluded that, at

least for the data used in this study, the models were indistinguishable.
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Comparison of Two Logistic Multidimensional Item

Response Theory Models

Psychometricians who have some interest in multidimensional item

response theory (MIRT) modeling may be familiar with the terms, compensatory

and noncompensaory as they relate to two general model classification schemes.

Ansley and Forsyth (1985) contrasted the two types of model classifications as

follows. "Compensatory models, unlike noncompensatory models, permit high

ability on one dimension to compensate for low ability on another dimension in

terms of probability of correct response. In the noncompensatory models, the

minimum factor (probability) in the denominator is the upper bound for the

probability of a correct response. Thus, for a two-dimensional item, a person with

a very low ability on one dimension and very high ability on the other has a very

low probability of correctly answering the item" (p. 40).

Typically, MIRT models of the compensatory type, such as the logistic

MIRT model (Doody-Bogan & Yen, 1983; Hattie, 1981; Reckase, 1985, 1986) or

the normal ogive MIRT model (Samejima, 1974) imply linear combinations of the

multidimensional abilities in the exponent of the expression for the probability of

a correct response. In this linear fashion, a low ability on one or more of the k

ability dimensions can be compensated by a higher ability on one or more of the

remaining dimensions. Because the compensation is a characteristic of this linear

combination, such models are probably more accurately labeled linear MIRT

models. A typical linear logistic MIRT model of the compensatory type can be

written as

k
[ I. fijm ] dj

e rn-i(
((1i) _ -+ (I _ c,) 1k

[ E fijrl'dj

+ e m-I
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where

fi a.m0i,

Cj= the pseudo-guessing parameter of the jth item,

aim = the discrimination parameter for the jth item on

the mth dimension,

d = the difficulty parameter for the jth item, and

6i, = the mth element in the ith person's ability vector,

In this model the favorable response probability, Pj(0,), is bounded from

below by c. However, because the upper bound of Pj(Oj) is not a function of any

k
one ability dimension, it increases monotonically as Z f.,, increases.

m-I

On the other hand, noncompensatory MIRT models (Sympson, 1978;

Embretson, 1984) describe the probability of a favorable response in terms of a

product of k functions of ability on a single dimension and item characteristics. In

its most common form, a logistic MIRT model of this noncompensatory or

multiplicative type can be written as

k efijm (2)P()- Cj + (1 - C) I
m-1 (l+efi)

where now we let f= [aim (0i. - bm)] with bjm = the difficulty parameter for the

jth item on the mth dimension. Pj(0,) is bounded by an upper asymptote equal to

the minimum of exp{fiji}/(1 +exp{fijm}), and the lower asymptote, c. for any given

examinee with 0 = 0j. Thus, the noncompensatory nature of the model is due to

the fact that Pj(0,) can never be greater than the minimum value of the terms in

the product, exp{fijm}/(1 +exp{fim}), a function of the smallest value of the k
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ability dimensions for a given examinee. Because of its multiplicative form, the

model is more generally labeled as a multiplicative MIRT model.

Researchers have used the multiplicative MIRT model to examine

characteristics of unidimensional item response theory parameter estimates

derived from MIRT response data (Ansley & Forsyth, 1985) and to model certain

multicomponent latent traits in response processes (Embretson, 1984). Reckase

(1985) has used a linear MIRT model on real response data to estimate two-

dimensional item and person parameters on an ACT Assessment Mathematics

Usage test. However, no oe has actually shown that one model is more

representative of the actual item-examinee response process than the other. It

may even be possible that one model may be appropriate under one set of

circumstances while the other type may be more appropriate in other situations.

In this paper we investigate the differences between item responses

generated by these two logistic MIRT models. We have been interested in

determining whether or not it is possible to distinguish one model or process from

the other through some evaluation of response data. More specifically, our

concern has been in establishing whether or not it is possible to detect differences

between these two MIRT models, either at the item response or test score level,

when the item parameters from each MIRT model have been matched or equated

in some sense.

The first task was to establish the item parameters from one of the logistic

MIRT models that would produce "reasonable" p-values or proportion-correct

indices for a specified examinee population. Therefore, a target distribution of p-

values for a 20-item test was conceived and item parameters for a linear or

compensatory MIRT model were chosen, basically by trial-and-error, until the

expected p value with respect to this examinee population matched the target

distribution. Table 1 gives the set of item parameters for the 20 items for the

model given by equation (1). The table also gives the expected value of each p-

value under the assumption that the ability vector, 0, for the examinee population,
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was distributed as bivariate normal with mean vector, 0, and variprice-covariance

matrix of ones along the diagonal and with nondiagonal values equal to rho

(.00, .25, .50, or .75). All c-parameters were set to zero.

Insert Table I Here

In order to produce a comparable or "matched" set of noncompensatory, or

multiplicative model item parameters, estimates of these item parameters were

obtained by minimizing

N 2

{ I[ Pc(O1, a, d) ]-[ P,( i, ]/ ti, (3)
i-I

for N = 2000 randomly selected examinees with ability, 0, distributed as given

previously, where Pc and Plc represent logistic MIRT models given by equations

(1) and (2), respectively. This process was repeated for 10 replications for each of

& " 2, "" items to irsrc that tbz estimt es obtained weren't unduly

influenced by the samples selected or the starting values used. Mean values of

the replication estimates yielded the noncompensatory item parameters listed in

Tablc 2-5, for rho values of .00, .25, .50, and .75. The expected value of each

item's p-value is given in the last column of each table. Because the least squares

minimization procedure produces unbiased estimates of P. c, the expected value of

each p-value under the noncompensatory model should be equal to that of the

compensatory model, within some estimation error. Equivalence of p-values was

the critical matching criterion between the two MIRT models.

Insert Tables 2-5
Here
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Model Differences at the Total Test Level

By treating the two sets of item parameters as known for each of the two

MIRT models, we first investigated the differences between expected number-

correct score frequencies of a 20-item test when 0 was distributed as a bivariate

normal random vector with distributions given previously. These frequencies were

estimated by evaluating either the number-correct distribution under the

compensatory model, hc(y) or the noncompensatory model, h1NcO'), for y

0, 1, 2, ... ,20, or

h c(Y) " f fc0: I 0) g(O) dO1 dO, (4)

and

hrjy -f. JNc&y 1 0) g(0) dO, d02(5

-Q -0

In each case, the conditional frequencies, fc(0 I 0) and fNc:y 1 0) were

computed using either models (1) or (2), and a rucursive procedure described by

Lord and Wingersky (1984). Fable 6 gives the signed differences between the

frequencies, hc(y) - hNc(Y), for y = 0, 1, 2, ..., 20, for rho values of .00, .25, .50,

and .75. The greatest differences, as expected, occurred for the highest number-

correct scores, but the differences in frequencies were small, never greater than

.015. For most number-correct score values, these differences became smaller as

rho increased.
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Another way to assess the significance of these differences was to

determine how much data would need to be observed before the differences were

statistically detectable. This was done by calculating the minimum sample size

required to reject the homogeneity of parallel populations with given levels of test

significance and power. These calculations assumed a multivariate normal

approximation for each model's multinomial distribution of observed-score

frequencies which in turn produced the quadratic form of the noncentrality

parameter of a noncentral chi square distribution. The minimum sample size

followed as a direct function of this parameter, the specified test significance, and

power. For example, with a significance level of .01 and power equal to .95, the

minimum sample sizes were 1678, 3242, 7466, and 15311 for correlated ability

distributions with rho equal to .00, .25, .50, and .75, respectively. These sample

sizes state that even in the unlikely event of uncorrelated ability distributions, it

would still require at least 1678 observed scores from both the compensatory and

noncompensatory MIRT models before the null hypothesis of model equivalence

could be rejected with a power of .95.

Insert Table 6 Here

The first four (central) moments of each number-correct distribution are

given in Table 7 for each value of rho. Both distributions were negatively skewed

with the compensatory distribution slightly more platykurtic and both were

generally flatter than the normal distribution. The variances of the number-

correct scores increased with an increase in rho, and in general, the distributions

of number-correct scores became increasingly similar as rho increased.

Insert Table 7 Here
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A contour plot of the (signed) difference between the number-correct true

scores under the two models, or

20 20

F, PJC(0) - PJNC(O)

was another way to observe model differences at the total test level for various

(01, 0,) points in the ability space. The greatest differences occurred when either

01 or 02 was low. See Figures 1-4 for rho values of .00. .25, .50, and .75,

respectively. It should be noted that, in these plots, the only influence of rho was

through the values of the noncompensatory item parameters. Recall that the

compensatory item parameters were fixed for all values of rho. Therefore, when

interpreting these contour plots, one has to mentally superimpose the appropriate

bivariate normal distribution over the contours in order to evaluate the

importance of the true-score differences observed.

Insert Figures 1-4
Here

Another way to compare the two MIRT models was to observe the amount

of multidimensional information (MINF) for different points in the ability space

between the two models. MINF has been defined (Reckase, 1986) as a direct

generalization of the unidimensionai IRT concept of item information (i.e, the

ratio of the square of the slope of the item characteristic curve at an ability point,

0, to the variance of the error of the item score at that level of 0). For the

definition of MINF, the slope of the item characteristic surface must be evaluated

in a particular direction, a, a vector of angles with the coordinate axes of the

ability space.

Plots of the absolute difference between the compensatory and

noncompensatory test information vectors (i.e, the sum of item information across
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the 20 items) for item p rameters estimated with rho values of .00, .25, .50, and

.75 (Figures 5-8, respectively) showed that model differences might be significant

if abilities were negatively correlated. However, for all "likely" ability

distributions, there were no meaningful differences in MINF between the two

models, and these absolute differences appeared to decrease as rho increased.

Insert Figures 5-8 Here

Model Differences at the Item Level

It was also of interest to evaluate the differences between models at the

single item response level. There were two ways in which this was done. The

first involved the evaluation of the ideal observer index (Davey, Levine, &

Williams, 1989; Levine, Drasgow, Williams, McCusker, & Thomasson, 1990). A

more complete definition of this index is provided in the appendix of this paper.

However, a simplified definition is as follows. The ideal observer index (101) is a

measure of the proportional number of times that a correct decision is made

concerning which of the two competing models produced a particular response to

an item. The decision is one that is made hypothetically by an "ideal observer," or

an individual who has access to all of the information necessary to yield the

highest possible percent of model classification (i.e., compensatory vs.

noncompensatory). As far as the ideal observer is concerned, if the item response

data fail to distinguish between the two competing models, then the value of this

index would be at or near the chance level of .5. Conversely, readily

distinguishable models should yield an index near 1.0.

Table 8 shows that the 101 was greater than chance, implying that there

was a difference between the models for all 20 items. However, the 101 was

never greater than .60 and was greater than .55 for only three items, numbers 3, 6,
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and 7, when rho was .00. The value of the 101 decreased for each item as rho

increased, implying that it became more difficult to distinguish between the

models as the correlation coefficient increased.

One way to think of the magnitude of the 101 was to imagine how many

trials of the 10 experiment would be necessary before the ideal observer could

ascertain, with some given level of certainty, that the models were actually

distinguishable. This would be comparable to a test of the difference between any

obtained 101 from Table 8 and the null proportion of correct model classifications

due to chance. For example, to be able to detect a true difference between the

models for item number 6 with a zero value of rho would require at least 40 trials

of the 10 experiment. This would be comparable to a test of the null proportion

of correct classifications due to chance or .50 versus the (true) alternative

proportion (.555) with a significance of .01 and power of .95. Conversely, a true

101 of .52 would require more than 290 trials at similar levels of test significance

and power.

Insert Table 8 Here

Another way to evaluate model differences at the item level was to use a

generalized MIRT model, or a reparameterization of both the compensatory and

noncompensatory models into a single MIRT model, or

P(O.) - C+(1-C) e fiji2 ,(6)

1 + e fij lfij2 + tu(efiJi + efii)(

where g represented an indicator variable such that

0, for the linear or compensatory MIRT model,

1, for the multiplicative or noncompensatory MIRT model.
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Item response data, xij, were generated from samples of size N = 2000 of

ei drawn from the bivariate normal distributions mentioned previously. The

response data were known to have been produced by either the compensatory or

noncompensatory MIRT model and were simulated by comparing the known

values of Pj(Oi) to a pseudorandomly drawn uniform deviate, w, such that

(1, 0 < ( < Pj(e1)
xij =

0, Pi(O) _< < 1.

The least squares estimation procedure was used to estimate the

generalized MIRT model parameters. Each estimation was replicated 10 times

with randomly selected starting values. Either four or five unique item

parameters were estimated from the generalized MIRT model, as given by

equation (6). The same item parameters that were given in tables 1-5 were used

to generate the response data for the estimation procedure. When the response

data were generated by the compensatory model, a , a2, and d (i.e., d = - alb, -

a2b2) as well as g, were estimated. When the response data were generated by

the noncompensatory model, a,, a2, b,, b2, and a were estimated.

Table 9 shows the average bias in the item parameter estimates and the

standard deviations of the estimates (in parentheses). For compensatory data, the

model parameter, A was estimated fairly accurately for the uncorrelated situation,

but the amount of bias and the standard deviation of the estimates increased as

rho increased. A similar situation occurred with noncompensatory data.

However, although the amount of estimation error increased as the correlation

between the abilities increased, the model still remained identifiable, in the sense

that for compensatory data, the 4 estimates were statistically "close" to zero.
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Likewise, for noncompensatory data, the A estimates were satistically "close" to

one.

Insert Table 9 Here

The 101 analysis and the generalized MIRT model estimation gave similar

results. That is, there were model differences at the item level, but these

differences tended to decrease as the correlation in abilities increased. The

generalized MIRT analysis also suggested that these differences might still be

estimable, however, even when abilities are strongly correlated.

Summary and Conclusions

These analyses and results seem to indicate that even though it is difficult

to observe model differences at the overall test score level, there still may be

measurable differences between the responses at the item level. Because the

matching criterion between the two models resulted in similar expected p-values,

we anticipated small differences at the total test score response level, or at the

true score level. The differences that were detected at this level were consistent

with the differences implied in the two models. Fewer high, number-correct

scores or estimated true scores were observed from the noncompensatory model,

but these and other total test differences decreased as rho increased. As for the

item response level analysis, both the 10[ and the generalized MIRT model

estimation showed that it is possible to quantify these differences and to

distinguish between the data generated by carefully matched item response

models of these two types. However, these differences, although real, are very

small and probably not significant from any practical standpoint.
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Although it is difficult to generalize beyond the two-dimensional situation

used in the present study, it would appear to be difficult to distinguish between

the two models without the benefit of any prior knowledge of item parameters or

abilities. Even with such prior knowledge, response data generated by the models

are nearly indistinguishable, especially with correlated abilities, which is likely the

case in many real testing situations.
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Appendix

Analytical Definition of the Ideal Observer Index

A hypothetical observer is presented with two abilities, t1 and t 2, each with

their associated item responses, u1 and u2. The observer is informed that one

ability-response pair was generated by one of two competing item response

models, while the other pair was generated under the second model. The task is

to correctly match each ability-response pair with the proper generating model.

To make this decision, the observer is given access to both competing item

response functions, P1 and P 2 , and the common ability distribution f(t).

An ideal observer bases this decision on an optimal rule, ,6, which is

determined by the ratio of likelihood functions, L(t,,u,) = Pi(tj) uj Qi(t,) -uj , where

Qi(tj) = 1 - Pi(t), i = 1, 2; j = 1, 2. The decision rule, 6, is then defined as

if Ll(tl,u,)-L2(t2,u2) > L1(t2,u2)L 2 (t1,u1 ), then decide model {P;f}
produced sample {tj,uj} while model {P2;f} produced {t2,u2}.

6=

if L1(t2,u2)L 2(t1,U) > L1(t1,u)-2(t2,U2), then decide model {P2;f}
produced sample {tl,u,} while model {Pi;f} produced {t2,u2}.

The probability of this decision rule being correct, given the model, is

Prob[6 correct I model] = Prob[Ll(tl,u,) - 1 2(t2,u2) > L1(t2,u2) "L2(t1,u 1 ) I {P1;f}&{P 2;f}] +

Prob[L1 (t2,u2) - L2(t1,u) > Ll(tl,ul) •L 2(t2,u2)1 {P2;f}&{P 1 ;f}].
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The response pair, u, where u = (UIU 2), can be defined in four possible

patterns: (1,1), (1,0), (0,1), and (0,0). Therefore,

Prob[L1,(tl,u1) - 1-2(t2,U2) > 1 (t2,U2) - L-2(t1,uI) I {pf)&{P2;f}J

Prob[P,(tl) - P2(t2) > P1(t2) - P2(tl)lu=(1,1)] - Prob[u=(1,1)l {Pl;f}&{P 2;f}J

" Prob[Pl(tj) - 0 2(t2) > QI(t 2) - P2(t1) I u=(1,0)] - Prob[u =(1,0)1 {PI;f}&{P2;f}j]

" Prob[QI(tj) -P 2(t2) > P14t2) - Q2(tl)Iu=(0,1)I - Prob[u=(O,1)I {Pl;f}&{P2;f}]

+ Prob[QI(tj) 0Q2(t2) > QI(t 2) - Q2(tl)lu=(0,0)1 - Prob~u=(0,0)jI{PI;f}&{P 2;fII.

Define v,- {fPI(t)uiQ1(t)I
1 uiP2(g)ujQ 2(g)l uj f(t) f(g) dt dg.

Then, Prob[L1,(t,,ul) - 1-2(t21u2) > Lj(t 21u2) - L-2(t1,u1) I {PI;f & {P2;f}]

7,, Prob[P1 (tj) -P2(02) > PI(t 2) -P2(tI) I U=(111)] +

TI Prob[Pl(tl) - Q2(t2) > Q1(02) - P2(tl)lu=(1,0)] +

T,~ Prob[Ql(tl) -P2(02) > P1(02) -0 2(t1)ju=(0,1)] +

irO Prob[Q1 (tj) - Q2(t2) > QI(t2) -Q2(tl) I u=(0,0)1.

Similarly, Prob[L1,(t 2,U2) - L.2(tl,u1) > L1(t,,u,) - L2(t2,U2)1 f P2;fl&{Pl;f}]

Prob[PI(t 2) - P2(t1) > PI(t 1) - P2(t2)ju=(1,1)] - Problu=(1,1)I {P2;f)&{P1;f}]

+ Prob[P1(t2) - Q2(tl) > Q1(tI) - P2(t2) I u=(1,0)] -Prob[u=(1,0) I P2;f)&{PI;f}j

+ Prob[Ql(t2) - P2(tI) > PI(t 1) - Q2(t2)1u=(0,)] -Prob[u=(0,1)I {P2;f}&{P1 ;f}]

+ Prob[Q1 (t2) - Q2(t1) > QI(tI) - Q2(t2) I u=(0,0)1 - Prob[u =(0,0)1 {P2;f}&{PI;f}I.
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Then, Prob[L-1(t2,u2) -L. 2(t,,u,) > 1 (t1,uI) L 12(t2,u2) I {P 2;fl&{Pl;f)]=

7r, Prob[PI(t 2) - P2(t1) > PI(tI) - P2(t2) Iu=(1,1)] +

7r~o Prob[P1 (t2) - Q2(01) > QI(tI) 2 (NO)I U= (1,0)I +

701 Prob[QI(t2) -P 2(tI) > NOt1 -Q 2(t 2)ju=(O,1)] +

7rO Prob[Q1 (t2) - Q2(tI) > QI(tI) - 02(t2) I U =(0,0)].

Lct 0,0 be definr-2 as that region of the ability space where

PI(tl)ul Q1 (tl)u11l P2(t2 )u2 -Q2( )u2-1 > PI(t 2) U2 - Q 1(t 2) u2-1 -P 2(tl)ul - Q2 (tl)ul11

holds, and likewise let iilu be defined as that region of the ability space where

NO 2 -Q 1 0 2 ) u2-1 - P2(tl)ul - Q 2 (tI )U1 1 > P1(t1)'l - Q1 (tl)u11' - P(t)u 2 -Q 2 0t2)U2- 1

is true. Then

Prob[P1 (tl) -P 2(t 2) > NO(t2  P2(tI) I1 U (1,1) 0 fjff(t) f(g) dt dg,

Prob[P 1(t1) -Q 2(t2) > Q1(02) NO P( 1 IU (1,0)] - {o f(t) f(g) dt dg,

Prob[QI(tj) -P 2(t2 ) > PA(t) -Q 2 (t1 ) IU (0,1)] -{f(t) f(g) dt dg,

and

Prob[Q,(t,) -Q 2(t2) > Q1 (t2) - Q2(t1) 1 U- (0,0)] Q f(t) f(g) dt dg.
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Then

Prob[P1 (t2) - NOt 1  > PI(t 1) -P 2(42) 1IU - (1,1)] j f(t) f(g) dt dg,

Prob[PI(t2) -Q 2(t1) > QI(t 1) -P 24t2) 1 U - (0,1)]A fj f(t) f(g) dt dg,

Prob[Q,(t2) - P 2 (01) > Q2 (42 ) NO P 1 IU - (1,0)] f Jj f(t) f(g) dt dg,

and

Prob[Q,(t2 ) -Q2@1I) > Ql(t1) I2 1U - (0,0)A f Jj f(t) f(g) dt dg.

Thius, Prob[65 correct Imodel]

Vr1 1 jjf(t) f(g) dt dg + ?r1 0 Jjf(t) f(g) dt dg +

OIrof f(t) f(g) dt dg + 7ro,,fj (t) f(g) dt dg +

~r1 fJ f(t)f(g)dtdg + 7r,,{J f(t)f(g)dtdg +

~Il o

7rofJ f(t)f(g)dtdg + 7rf J f(t) f(g) dtdg

CIO COO0

or

7ruI + 7r 0{jf(t) f(g) dt dg +Jjf(t)f(g)dtdg} +

7r0 1 {{ ,f(t)f(g)dtdg + fj'f(tQf(g)dtdg) + o
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Finally, Prob[6 correct] = Prob[6 correct I model] - Prob[selecting a

model]. Because each model is equally likely, the probability of selecting a model

is equal to .5. Thus, Prob[6 correct] = .5(Prob[6 correctl model]).
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Table 1

Original Item Parameters for the Compensatory Model

E(p-value)

rho

Item # a1  a2  d .00 .25 .50 .75

01 0.90 1.31 -0.67 .39 .39 .40 .40

02 2.10 0.50 -1.13 .34 .35 .36 .36

03 0.89 1.10 0.52 .59 .59 .58 .58

04 0.99 1.00 -0.44 .42 .42 .43 .43

05 0.58 1.65 0.78 .63 .62 .62 .61

06 0.91 1.27 0.42 .57 .57 .57 .56

07 1.03 0.95 1.08 .69 .68 .67 .67

08 0.32 2.27 0.38 .55 .55 .55 .55

09 0.61 0.72 1.63 .80 .79 .79 .78

10 0.67 1.12 0.60 .61 .61 .60 .(

11 0.91 0.91 -0.21 .46 .46 .46 .47

12 0.64 1.72 -0.05 .49 .49 .49 .49

13 1.65 0.38 0.40 .57 .56 .56 .56

14 0.18 1.61 1.84 .78 .78 .78 .77

15 0.82 1.02 0.09 .52 .52 52 .51

16 1.45 0.81 -0.24 .46 .46 .46 .46

17 1.64 0.62 0.85 .A4 .63 .63 .62

18 0.77 0.76 -0.91 .32 .33 .34 .34

19 1.46 0.62 0.10 .52 .52 .52 .52

20 0.39 1.37 0.32 .56 .56 .55 .55
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Table 2

Item Parameters for the Noncompensatory Model with Rho .00

Item # a, a2  b, b2  E(p-value)

01 1.26 1.60 -0.92 -0.15 .38

02 2.30 1.04 0.38 -2.28 .34

03 1.22 1.39 -1.42 -0.99 .59

04 1.32 1.35 -0.62 -0.58 .42

05 1.02 1.82 -2.71 -0.62 .62

06 1.25 1.53 -1.45 -0.79 .56

07 1.30 1.26 -1.48 -1.63 .68

08 0.92 2.38 -3.95 -0.22 .55

09 0.93 1.00 -2.75 -2.35 .80

10 1.05 1.37 -1.96 -0.90 .61

11 1.24 1.25 -0.78 -0.75 .46

12 1.07 1.92 -2.17 -0.19 .49

13 1.81 0.88 -0.36 -3.25 .56

14 0.85 1.67 -5.26 -1.17 .73

15 1.17 1.32 -1.21 -0.75 .51

16 1.71 1.23 -0.27 -1.35 .45

17 1.83 1.06 -0.68 -2.55 .63

18 1.09 1.09 -0.31 -0.32 .32

19 1.69 1.07 -0.35 -1.98 .51

20 0.88 1.54 -2.98 -0.41 .55
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Table 3

Item Parameters for the Noncompensatory Model with Rho = .25

Item # a1  a2  b1  b2  E(p-value)

01 1.38 1.74 -0.79 -0.14 .39

02 2.40 1.14 0.35 -1.88 .34

03 1.36 1.50 -1.27 -0.91 .58

04 1.44 1.45 -0.56 -0.51 .42

05 1.17 1.94 -2.30 -0.60 .61

06 1.40 1.66 -1.28 -0.73 .56

07 1.45 1.40 -1.34 -1.47 .72

08 1.05 2.47 -3.30 -0.22 .55

09 1.02 1.09 -2.49 -2.17 .79

10 1.17 1.47 -1.72 -0.85 .M0

11 1.34 1.34 -0.71 -0.68 .46

12 1.21 2.06 -1.82 -0.20 .49

13 1.90 0.98 -0.36 -2.80 .56

14 0.93 1.72 -4.65 -1.15 .78

15 1.29 1.42 -1.08 -0.69 .51

16 1.84 1.33 -0.27 -1.16 .45

17 1.97 1.20 -0.66 -2.19 .62

18 1.15 1.16 -0.28 -0.27 .33

19 1.80 1.18 -0.35 -1.71 .51

20 0.98 1.61 -2.57 -0.40 .55
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Table 4

Item Parameters for the Noncompensatory Model with Rho = .50

Item # a, a2  b1  b2  E(p-value)

01 1.52 1.82 -0.66 -0.12 .39

02 2.48 1.27 0.32 -1.51 .35

03 1.49 1.63 -1.14 -0.85 .58

04 1.54 1.54 -0.50 -0.45 .42

05 1.32 2.04 -1.97 -0.59 .61

06 1.55 1.79 -1.13 -0.68 .56

07 1.58 1.55 -1.23 -1.33 .67

08 1.20 2.51 -2.78 -0.22 .55

09 1.10 1.17 -2.30 -2.03 .78

10 1.28 1.56 -1.53 -0.80 .60

11 1.44 1.43 -0.64 -0.61 .46

12 1.36 2.1? -1.54 -0.19 .49

13 1.% 1.09 -0.36 -2.39 .56

14 1.03 1.77 -4.07 -1.13 .77

15 1.39 1.51 -0.97 -0.64 .51

16 1.95 1.47 -0.26 -0.99 .46

17 2.08 1.35 -0.63 -1.89 .62

18 1.21 1.20 -0.23 -0.23 .33

19 1.89 1.30 -0.34 -1.46 .51

20 1.08 1.66 -2.23 -0.40 .55
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Table 5

Item Parameters for the Noncompensatory Model with Rho = .75

Item # a, a2  b1  b2  E(p-value)

01 1.65 1.92 -0.51 -0.10 .40

02 2.53 1.43 0.31 -1.14 .35

03 1.60 1.73 -1.01 -0.77 .58

04 1.63 1.64 -0.42 -0.39 .43

05 1.48 2.14 -1.67 -0.57 .61

06 1.69 1.92 -0.98 -0.62 .56

07 1.69 1.66 -1.13 -1.21 .66

08 1.36 2.57 -2.25 -0.22 .55

09 1.15 1.21 -2.17 -1.93 .78

10 1.38 1.63 -1.36 -0.76 .60

11 1.50 1.51 -0.56 -0.54 .46

12 1.53 2.23 -1.22 -0.19 .49

13 1.98 1.26 -0.36 -1.99 .56

14 1.15 1.78 -3.60 -1.11 .77

15 1.47 1.59 -0.85 -0.59 .51

16 2.03 1.63 -0.23 -0.81 .46

17 2.15 1.53 -0.61 -1.60 .62

18 1.24 1.24 -0.18 -0.18 .34

19 1.94 1.44 -0.33 -1.23 .51

20 1.17 1.70 -1.92 -0.40 .55
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Table 6

Compensatory Minus Noncompensatory Density Differences in Number-correct Score

rho

Number-correct
score (y) .00 .25 .50 .75

20 .013 .014 .014 .011

19 .015 .012 .009 .004

18 .012 .007 .003 .000

17 .007 .003 .000 -.002

16 .002 -.001 -.002 -.003

15 -.003 -.003 -.004 -.003

14 -.006 -.005 -.004 -.003

13 -.009 -.007 -.005 -.003

12 -.011 -.007 -.005 -.002

11 -.012 -.008 -.005 -.002

10 -.012 -.008 -.004 -.001

9 -.011 -.007 -.004 -.001

8 -.009 -.006 -.003 .000

7 -.006 -.004 -.002 .001

6 -.003 -.002 -.001 .001

5 .001 .000 .001 .002

4 .005 .002 .002 .002

3 .008 .005 .003 .002

2 .009 .006 .004 .001

1 .008 .006 .003 -.001

0 -.005 .003 .001 -.004
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Table 7

Central Moments of Number-correct Scores

Second Third Fourth
MIRT Models rho Mean Central Central Central

Moment Moment Moment

.00 10.90 25.79 -16.56 1362.83

Compensatory .25 10.88 29.40 -20.44 1680.36

.50 10.86 32.64 -24.01 1980.03

.75 10.84 35.57 -27.27 2262.98

.00 10.79 20.67 -9.42 946.49

Noncompensatory .25 10.78 25.43 -15.86 1336.75

.50 10.78 30.12 -24.30 1760.64

.75 10.78 34.70 -32.74 2200.57
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Table 8

Ideal Observer Index

rho

Item # .00 .25 .50 .75

01 .5479 .5397 .5295 .5179

02 .5311 .5265 .5205 .5128

03 .5513 .5418 .5307 .5183

04 .5461 .5377 .5279 .5171

05 .5421 .5353 .5265 .5157

06 .5550 .5451 .5332 .5194

07 .5511 .5419 .5304 .5175

08 .5243 .5212 .5165 .5102

09 .5276 .5227 .5162 .5092

10 .5430 .5351 .5254 .5149

11 .5435 .5355 .5260 .5156

12 .5448 .5375 .5281 .5166

13 .5291 .5246 .5185 .5112

14 .5124 .5109 .5082 .5048

15 .5456 .5370 .5271 .5161

16 .5497 .5411 .5307 .5182

17 .5442 .5371 .5276 .5162

18 .5281 .5232 .5175 .5114

19 .5425 .5352 .5260 .5156

20 .5292 .5241 .5179 .5108
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Table 9

Average Bias (parameter estimate - true parameter) and Standard Deviation

of Bias in Estimates of the Generalized MIRT Model Parameters

Response
Data Model rho a, a2  d b, b 2

.00 .044 .024 .069 .013
(.042) (.073) (.158) (.009)

.25 .044 .040 .125 .026
Compensatory (.047) (.042) (.275) (.052)

.50 .078 .069 .255 .064
(.055) (.081) (.238) (.060)

.75 .098 .113 .787 .107
(.128) (.080) (1.930) (.094)

.00 -.008 .009 .130 .230 -.199
(.099) (.115) (.448) (.354) (.163)

.25 -.006 -.004 .250 .254 -.197
Noncompensatory (.090) (.083) (.622) (.464) (.144)

.50 .039 -.076 .191 .183 -.200
(.145) (.104) (.888) (.265) (.125)

.75 -.155 -.059 .071 .250 -.288
(.220) (.105) (.439) (.421) (.175)

Note: standard deviations are in parentheses
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Figure Captions

Figure 1. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .00

Figure 2. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .25

Figure 3. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .50

Figure 4. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .75

Figure 5. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .00

Figure 6. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .25

Figure 7. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = . 50

Figure 8. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .75
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